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Nanoindentation experiments have become a com-
monly used technique to investigate mechanical prop-
erties of thin films and small volumes of materials. The
analysis of the experimental load—displacement (P-h)
curve is based on the fundamental relationship among
contact stiffness, contact area and elastic modulus. The
slope of the P-h curve, S = dP/dh, is defined as con-
tact stiffness and it can be measured from nanoinden-
tation experiments. The fundamental relationship re-
lates contact stiffness to the projected contact area (A),
Young’s modulus of the material (£), and Poisson’s
ratio of the material (v), as

2 E

The fundamental relationship, which is used in the in-
terpretation of nanoindentation experimental data, is
based on the analytical solution of normal indentation
of an elastic half-space by a smooth frictionless ax-
isymmetric indenter. This relationship has been veri-
fied for an indenter whose shape is flat-ended, conical,
or parabolic. Pharr, Oliver and Brotzen show that this
relationship holds true if the indenter profile can be de-
scribed as a solid of revolution of a smooth function [1].
However, their proof is not mathematically correct (see
Appendix). This relationship is revisited in this paper.
The indenter profile, a smooth function, is expanded
as a Maclaurin series and the derivation shows that the
fundamental relationship is valid.

We consider a rigid smooth frictionless axisymmet-
ric indenter with its axis of revolution as the z-axis
indenting normally into the plane z = 0 of an elastic
half-space z > 0. The problem is considered in the
linear theory of elasticity and the half-space is assumed
to be isotropic and homogeneous. The contact region
between the indenter and the half-space is simply
connected.

The following equations give the relevant displace-
ment and stresses for the half-space. The vertical com-
ponent of the displacement is denoted by u,, and the
stress components have two subscripts corresponding
to the appropriate coordinates. £ and v are Young’s
modulus and Poisson’s ratio for the half-space.

As Fig. 1 shows, the boundary conditions for the
half-space at z = 0 are
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where « is a positive real number. The second term at
the right hand side of Equation 4 describes the indenter
shape.

The radius of the contact area, a, and the indentation
depth, &, are related by the following equation [2]:
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The total vertical load, P, which causes the displace-
ment A is
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The indenter profile, f(r), is a smooth function, and
can be expanded as a Maclaurin series:
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The corresponding displacement equation for the in-
denter is
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Note Equation 5 is true for any positive real number «.
From Equation 5, we have
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The corresponding load-displacement relation is
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Figure 1 Normal indentation of an elastic half-space.

And the contact stiffness is
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Noting Equations 9 and 11 becomes
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Thus,
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Appendix
There are several ways to show Pharr et al.’s proof [1]
is not correct:

a. Equation A2 implies f'(x) dx = f'(p) dp, which
is not true unless x = p.

b. The variable x of the function f(x) is defined at
the interval [0, 1] at Equation Al. It becomes [0, a] at
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Equations A2 and A3. They are not the same unless
a=1.
c. The correct derivation for Equation A2 should be
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The correct derivation for Equation A3 should be
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It is obvious that it will not lead to Equation A4. Thus,
the authors failed to prove the fundamental relation.

References

1. G. M. PHARR, W. C. OLIVER and F. R. BROTZEN, J.
Mater. Res. 7 (1992) 613.

2. G. FUand A. CHANDRA, J. Appl. Mech. ASME 69 (2002) 142.

Received 28 August
and accepted 8 September 2003



